

Response to ARPA-H July 17 Letter Re Submission Requirements

- (1) BAA number (75N99223S0001)
- (2) Technical areas: Health Science Futures, Scalable Solutions, and Proactive Health
- (3) Lead organizations submitting proposal: Society for Heart Attack Prevention & Eradication (SHAPE) and HeartLung.AI Corporation
- (4) Type of organization: NONPROFIT (SHAPE) and C CORPORATION (HeartLung.AI)
- (5) Proposer's reference number (if any): N/A
- (6) Other team members (if applicable) and type of organization for each:

Participating Longitudinal Cohorts from Academic Institutions			
Daniel Levy	Framingham Heart Study		
Philip Greenland	MESA		
Raimund Erbel	HNR (Heinz Nixdorf Recall Study)		
Valentin Fuster	PESA/BioImage / HRP Study		
Amit Khera	Dallas Heart Study		
Herman Taylor	Jackson Heart Study		
Tatiana Kouznetsova	FLEMENGHO Study		
Khurram Nasir	MiHeart Study		
Harry de Koning	ROBINSCA		
Michael Blaha	ARIC and Brazilian MESA		
Jes Sanddal Lindholt	VIVA		
Axel Diederichsen	DANRISK and DANCAVAS		
Oscar Franco	Rotterdam Heart and Erasmus Age		
Paul Elliot	UK Biobank		
Wolfgang Koenig	BiomarCaRE		

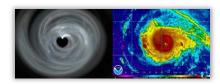
(7) Proposal Title: Developing an Artificial Intelligence System to Forecast Near-Term Sudden Cardiac Death and Cardiovascular Events in Asymptomatic Individuals with no History of Cardiovascular Disease (CVD)

8) Technical point of contact:	9) Administrative point of contact:
Dr. Naghavi, Morteza,	Mr. Montes, Marlon, Dr. Naghavi, Morteza
TMC Innovation, 2450 Holcomb Blvd,	TMC Innovation, 2450 Holcomb Blvd,
Houston, TX 77021	Houston, TX 77021
Tel: (650) 414-5057	Tel: (650) 263-7636
Email: mn@shapesociety.org	Email: marlon@heartlung.ai

- (10) Total funds requested from ARPA-H, and the amount of cost share (if any): \$39,600,000
- (11) Date proposal was submitted: May 12, 2023
- (12) Keywords: Cardiovascular Disease, Heart Attack, Stroke, AI

ARPA-H Proposal Abstract:

Developing an Artificial Intelligence System to Forecast Near-Term Sudden Cardiac Death and Adverse Cardiovascular Events in Asymptomatic Individuals with no History of Cardiovascular Disease (CVD)


Concept Summary: We aim to use AI to detect who will have a cardiovascular event, such as sudden cardiac death, heart attack, or stroke, within a year (detect the Vulnerable Patient). AI will be trained based on a rare collection of existing data from numerous longitudinal studies throughout US, Europe, and South America. Each study contributes a unique set of data from asymptomatic individuals who shortly (i.e. hours, days, or weeks, up to 12 months) after their medical visit had a sudden cardiac death or an adverse CVD event. During the medical visit, they must have had a blood draw (banked), and their medical records must include a complete clinical evaluation along with a coronary artery calcium (CAC) scan, a coronary CT angiography (CCTA), or a chest CT scan obtained within 2 years prior to the event. By applying deep learning techniques to this set of rare data, we will train AI to identify individuals at very high risk for a near-term event. For the first time, the field of cardiology will be able to predict who will have a heart attack, stroke, or an adverse CVD event within 12 months.

Background: CVD has been the #1 cause of death and healthcare costs in the US for decades. Every year over 600,000 first-time heart attacks unexpectedly hit asymptomatic Americans. Currently less than 3% of US adults aged 20-79 years have an optimal cardiovascular risk factors profile defined as: total cholesterol <200 mg/dL (5.17 mmol/L), blood pressure <120/<80 mm Hg, non-smoker, body mass index (BMI) <25 kg/m2, fasting plasma glucose <100 mg/dL (5.56 mmol/L). Nonetheless, the awareness on CVD risk factors is above 95% meaning almost all US adults are aware of the risk associated with these risk factors. Clearly, new strategies are needed.

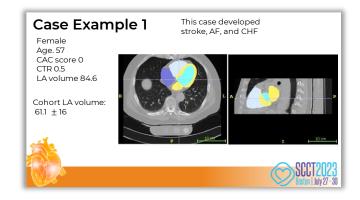
Innovation and Impact: No longitudinal cohort or biobank in the world, by itself, has enough cases for this project. Hence, we have invited all prospective cardiovascular epidemiological studies worldwide to participate in this study, and we have 14 large cohorts committed so far that will amount to about 1,000 cases.

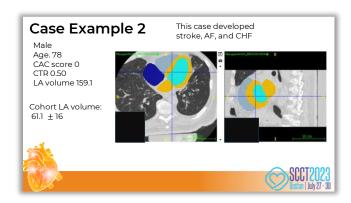
State of the Art: Since the pioneering Framingham Heart Study in 1960s introduced CVD risk factors, the practice of preventive cardiology has been based on long-term CVD risk prediction. Physicians tell their patients that based on their risk factors (age, gender, blood pressure, cholesterol, diabetes, smoking etc.) their risk of developing cardiovascular disease in the next 10 years is X. The median and mean for X are 2.7% and 5.2% respectively. Although such a long-term risk assessment is necessary, it is not enough. It does not trigger immediate preemptive actions and cannot detect asymptomatic patients who are vulnerable to a near-term CVD

event. A layman's analogy to this scenario would be a TV weather broadcaster announcing that, over the next 10 years, a catastrophic hurricane will hit an area. Such an announcement would hardly change behaviors. However, when the weatherman displays a hurricane eye coming in a narrow path in the near future, it can cause immediate preemptive actions. A medical analogy would

be finding a tumor in a cancer patient that gets serious attention and triggers immediate interventions to improve outcomes. Having such a predictive tool in cardiology can cause a paradigm shift resulting in developing new treatments. Developing this highly desired tool is the purpose of our ARPA-H "moonshot" proposal.

Proposed Work: We will utilize the Framingham Heart Study, MESA, ARIC, UK Biobank, HNR, BioImage, and the Dallas Heart Study for AI training. External validation to test for discrimination and calibration will be conducted using other longitudinal observational studies that provide adjudicated cardiovascular event information, such as MiHeart, JHS, DANRISK and ROBINSCA. Additionally, we will use AI to characterize individuals who, despite high conventional risk due to hyperlipidemia, hypertension, diabetes, smoking and obesity have lived over 80 years with no CHD events (the Invulnerable Patient). We expect to discover new targets for drug and possibly vaccine development. We will make the AI algorithms available as an open-source tool to collect additional data over time and increase AI's predictive value.


Topic Area of BAA	How Proposal Addresses Topic		
Health Science	Dramatically improves upon the current practice of preventive cardiology and		
Futures	provides opportunities not only for accurate risk assessment but also has the potential		
	to yield new therapeutic targets including vaccine for heart attacks.		
Scalable Solutions	The AI tool resulting from this proposal will be a SaaS product therefore readily		
	scalable to access worldwide.		
Proactive Health	Alerting the very high-risk individuals who have no symptoms and are completely		
	unaware of their high risk of a catastrophic health event in the near future will likely cause immediately proactive and preemptive actions.		
Health Outcome(s)	The primary health outcome will be significant reductions in sudden cardiac death,		
Sought	acute coronary syndromes, and cerebrovascular events.		
Innovative and	This AI-enabled approach in preventive cardiology will be revolutionary and highly		
Revolutionary	innovative. Nonetheless it is based on proven track record in cancer treatment where		
	a detection of a malignant tumor can trigger rapid response and immediate		
	compliance to intensive treatments such as chemotherapy. Whereas today, preventive		
	cardiology faces poor compliance with over half of statin prescriptions not filled after		
	the first year.		
Disruptive	The proposed AI-enabled solution can cause a paradigm shift in preventive		
	cardiology and disrupt some of the current imprecise population-based risk		
	assessment and therapeutic strategies with such high NNT (number needed to treat).		
	Instead, highly effective personalized preemptive therapies (coronary artery bypass		
	graft) can be applied to a small number of very high-risk patients.		
Positive Impact:	The proposed AI-enabled solution will impact millions of lives worldwide as CVD is		
	the number 1 killer in most countries and kills over 17 million annually.		
Quantitative Metrics:	As shown in the modality table below, the quantitative jump from the existing		
	solution to the proposed solution will be on the order of magnitude (approximately		
	40 times more precise). Furthermore, we will make the AI algorithms available as an		
	open-source platform to collect additional data over time and increase AI's predictive		
	value.		
Value Add:	The proposed solution will greatly enhance the accuracy of targeted therapy and will		
	reduce unnecessary waste of healthcare resources. It will result in added millions of		
	productive life years for human beings that will contribute to the world's economy.		


.

Illustrative Example: As an illustrative example, HeartLung.AI's breakthrough AutoChamber™ AI Software as a Medical Device (SaMD) can detect high risk patients for heart failure and stroke. It uses deep learning algorithms to visualize chambers volume in non-contrast cardiac CT scans which human eyes cannot detect. This technology is currently under review by FDA Breakthrough Designation committee.

Anticipated Outcome and Impact: Preliminary data indicates for this ARPA-H project, we can expect to be able to develop algorithms and a Software as Medical Device (SaMD) that will provide a patient with a forecast of approximately 20% chance of near-term sudden cardiac death and adverse cardiovascular events in asymptomatic individuals with no history of cardiovascular disease (CVD) within the next 12 months. This is far more compelling and actionable than average 5.2% within the next 10 years. We expect the FDA filing to be initiated within 9 months, with anticipated clearance as "Breakthrough Medical Device Designation" within 16 months.

Modality	Method	Forecast	Time Frame
Existing	Risk Factors, Polygenic Risk Score, Coronary Artery Calcium Score	Average 5.2%	10 years (120 months)
Proposed	AI-Enabled Event Forecaster Comprising Existing Modality and New Biomarkers	About 20%	1 year (12 months)

Executive Director: Morteza Naghavi, M.D.

Steering Committee: Valentin Fuster, M.D., Ph.D., Philip Greenland, M.D., Daniel Levy, M.D., David Maron, M.D., Jagat Narula, M.D., Ph.D., Michael Blaha, M.D., M.P.H., Michael Pencina, Ph.D., David Yankelevitz, M.D.

Co-Investigators (Alphabetic Order)

Arthur Agatston, M.D.Founder of South Beach Diet, Director of Wellness at Baptist Hospital and Professor of Medicine at University of Miami, FL

Juan Badimon, Ph.D.
Professor of Medicine, Director,
Atherothrombosis Research Unit
Mount Sinai Hospital, New York, NY

Emelia Benjamin, M.D., Sc.M.

Professor of Medicine and Cardiovascular Epidemiology, Boston University Boston, MA

Daniel Berman, M.D.

Professor of Medicine at UCLA, Director of Cardiac Imaging and Nuclear Cardiology at Cedars-Sinai, Los Angeles, CA

Michael Blaha, M.D.

Director of Clinical Research, Ciccarone Center for the Prevention of Heart Disease Johns Hopkins University, Baltimore, MD

Mathew Budoff, M.D.

Professor of Medicine and Director of Preventive Cardiology, UCLA Harbor, Los Angeles, CA

Axel C. P. Diederichsen, M.D.

Associate Professor, Department of Cardiology, Odense University Hospital, Denmark

Raimund Erbel, M.D.

Chief of Cardiology and Director of West German Heart Centre, and HNR Cohort University Essen, Germany

Erling Falk, M.D., Ph.D.

Professor of Pathology and Cardiology, Aarhus University Hospital (Skejby) Aarhus, Denmark

Sergio Fazio, M.D., Ph.D.

Chair of Preventive Cardiology and Professor of Medicine, Oregon Health and Science University, Portland, OR

Philip Greenland, M.D.

Professor of Cardiology, Director, Institute for Public Health and Medicine, Center for Population Health Sciences, Chicago, IL

Craig J. Hartley, Ph.D.

Professor Emeritus - Cardiovascular Sciences and Bioengineering, Baylor College of Medicine, Houston, TX

Harvey Hecht, M.D.

Director of Cardiac CT Imaging Laboratory Mount Sinai School of Medicine New York, NY

Claudia Henschke, Ph.D., M.D.

Professor of Radiology, Carl Icahn Mount Sinai School of Medicine, Founding Director of Lung Cancer Screening Cohort IELCAP, New York

Howard Hodis, M.D.

Director of Atherosclerosis Research Keck School of Medicine USC, Los Angeles, CA

Karl-Heinz Jöckel, Ph.D.

Institute for Medical Informatics Biometry and Epidemiology University of Duisburg-Essen, Germany

Ioannis Kakadiaris, Ph.D.

Professor of Computer Science and Biomedical Engineering, University of Houston, Houston, TX

Stanley Kleis, Ph.D.

Professor of Mechanical Engineering and Biomedical Engineering, University of Houston, Houston, TX

Robert Kloner, M.D., Ph.D.

Director, Cardiovascular Research, Huntington Medical Research Institute Pasadena, California

Harry de Koning, M.D., Ph.D.

Professor of Screening Evaluation School of Public Health, Erasmus MC, Rotterdam, The Netherlands

Tatiana Kuznetsova, M.D.

Professor and Director, Hypertension and Cardiovascular Epidemiology, University of Leuven, Leuven, Belgium

Dong Li, M.D., Ph.D.

Assistant Professor, Emory University School of Medicine, Outcomes Research and Data Analysis, Atlanta, GA

Daniel Levy, M.D.

Director of Framingham Heart Study, and Intramural Investigator, National Institute of Health, Bethesda, MD

Jes Linddholt, DMSci., Ph.D.

Elitary Research Centre of Individualised Medicine in Arterial Diseases, Odense University Hospital, Denmark

Seth Lirette, Ph.D.

Assistant Professor of Data Sciences and Radiology, University of Mississippi Medical Center, Jackson, MD

Amir-Abbas Mahabadi, M.D.

Assistant Professor of Cardiology, West German Heart Centre, University Essen, Germany

David Maron, M.D.

Professor and Director, Preventive Cardiology Stanford University School of Medicine, Stanford, CA

Roxana Mehran, M.D.

Professor of Medicine and Director of Interventional Clinical Trials, Mount Sinai School of Medicine, New York, NY

Ralph Metcalfe, Ph.D.

Professor of Mechanical and Biomedical Engineering, University of Houston, Houston, TX

Susanne Moebus, Ph.D., M.P.H

Biologist & Epidemiologist, Head of the Centre for Urban Epidemiology, University Essen, Germany

Martin Mortensen, M.D., Ph.D.

Assistant Professor of Cardiology Aarhus University Hospital, Arhus, Denmark

Kyle Myers, Ph.D.

Data Scientist, Former Director of Imaging and Applied Mathematics at the FDA Centre for Devices and Radiological Health

Morteza Naghavi, M.D.

Founder and Executive Chairman of the SHAPE Task Force, President of American Heart Technologies, Houston, TX

Tasneem Z. Naqvi, M.D.

Professor of Medicine and Director of Echocardiography, College of Medicine, May Clinic, Scottsdale, AZ

Jagat Narula, M.D., Ph.D.

Professor of Medicine and Vice President of Academic Affairs, University of Texas Health Science Center, Houston, TX

Khurram Nasir, M.D., M.P.H.

Director, Professor of Medicine, Chief Cardiovascular Prevention & Wellness Houston Methodist, Houston, TX

Michael Pencina, Ph.D.

Professor of Biostatistics and Bioinformatics at Duke University and Director of Duke AI Health, Durham, NC

Christopher J. O'Donnell, M.D., M.P.H.

Chief, Cardiovascular Epidemiology and Human Genomics Branch, NHLBI Division of Intramural Research, Bethesda, MD

Paolo Raggi, M.D.

Director, Mazankowski Alberta Heart Institute, Professor of Medicine, University of Alberta, Edmonton, AB, Canada

Ulla Roggenbuck, Ph.D.

Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Germany

Anthony Reeves, Ph.D.

Professor of Electrical Engineering and Director of Computer Vision Laboratory Cornell University, Ithaca, NY

James HF Rudd, Ph.D.

Senior Lecturer, Division of Cardiovascular Medicine, University of Cambridge Hospital, Cambridge, UK

P.K. Shah, M.D.

Professor and Director, Atherosclerosis Research Center, Cedars-Sinai Medical Center, UCLA, Los Angeles, CA

Henrik Sillesen, M.D.

Professor and Head of Dept. of Vascular Surgery, Rigs Hospitalet, University of Copenhagen, Copenhagen, Denmark

Robert Superko, M.D.

Professor of Medicine and President at Cholesterol, Genetics, and Heart Disease Institute, Carmel, CA

Brenda Garrett Superko, C.V.R.N.

Board Member of SHAPE. Assistant Director Cholesterol, Genetics, and Heart Disease Institute, Carmel, CA

Hiro Tanaka, Ph.D.

Professor and Director, Cardiovascular Aging Research Laboratory, University of Texas, Austin, TX

Herman A. Taylor, M.D., M.P.H.

Director, Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA

Pierre-Jean Touboul, M.D.

Professor of Neurology, Department of Neurology and Stroke Center, AP-HP Bichat University Hospital, Neurology and Stroke Center, Paris, France

Thomas J. Wang, M.D.

Director of Cardiovascular Medicine, and Physician-in-Chief, Vanderbilt Heart Institute, Nashville, TN

Nathan Wong, M.P.H, Ph.D.

Professor of Epidemiology and Director, Heart Disease Prevention Program, University of California, Irvine, CA

David Yankelevitz, M.D.

Professor of Radiology, Carl Icahn Mount Sinai School of Medicine, Founding Director of Lung Cancer Screening Cohort IELCAP, New York

Rough Order of Magnitude (ROM) Budget:

Cost Category	Amount
Direct Labor	\$5,000,000
Subcontractors	\$26,300,000
Materials	\$500,000
Equipment	\$1,000,000
Travel	\$200,000
Other Direct Costs	\$3,000,000
Profit	10%
Cost Sharing	\$0
Total	\$39,600,000

Participating Longitu	dinal Cohorts from Academic Institutions (Subcontractors)	Expected Number of Cases*	Cost
Daniel Levy	Framingham Heart Study	127	\$3,175,000
Philip Greenland	MESA	68	\$1,700,000
Raimund Erbel	HNR (Heinz Nixdorf Recall Study)	77	\$1,925,000
Valentin Fuster	PESA/BioImage / HRP Study	28	\$700,000
Amit Khera	Dallas Heart Study	44	\$1,100,000
April Carson	Jackson Heart Study	38	\$950,000
Tatiana Kouznetsova	FLEMENGHO Study	24	\$600,000
Khurram Nasir	MiHeart Study	18	\$450,000
Harry de Koning	ROBINSCA	29	\$725,000
Michael Blaha	ARIC and Brazilian MESA	82	\$2,050,000
Jes Sanddal Lindholt	VIVA	31	\$775,000
Axel Diederichsen	DANRISK and DANCAVAS	98	\$2,450,000
Oscar Franco	Rotterdam Heart and Erasmus Age	87	\$2,175,000
Paul Elliot	UK Biobank	282	\$7,050,000
Wolfgang Koenig	BiomarCaRE	19	\$475,000
	Total (Estimated)	1052	\$26,300,000

^{*}Each case is defined as <u>existing</u> data including a blood or serum sample from a longitudinal study participant, an asymptomatic individual who shortly (i.e. hours, days, or weeks, up to 12 months) after their medical visit had a sudden cardiac death or an adverse CVD event.